Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
UCL Open Environ ; 4: e032, 2022.
Article in English | MEDLINE | ID: covidwho-20234387

ABSTRACT

Human behaviour change is necessary to meet targets set by the Paris Agreement to mitigate climate change. Restrictions and regulations put in place globally to mitigate the spread of COVID-19 during 2020 have had a substantial impact on everyday life, including many carbon-intensive behaviours such as transportation. Changes to transportation behaviour may reduce carbon emissions. Behaviour change theory can offer perspective on the drivers and influences of behaviour and shape recommendations for how policy-makers can capitalise on any observed behaviour changes that may mitigate climate change. For this commentary, we aimed to describe changes in data relating to transportation behaviours concerning working from home during the COVID-19 pandemic across the Netherlands, Sweden and the UK. We display these identified changes in a concept map, suggesting links between the changes in behaviour and levels of carbon emissions. We consider these changes in relation to a comprehensive and easy to understand model of behaviour, the Opportunity, Motivation Behaviour (COM-B) model, to understand the capabilities, opportunities and behaviours related to the observed behaviour changes and potential policy to mitigate climate change. There is now an opportunity for policy-makers to increase the likelihood of maintaining pro-environmental behaviour changes by providing opportunities, improving capabilities and maintaining motivation for these behaviours.

2.
Vaccines (Basel) ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2299071

ABSTRACT

Drawing upon theories of risk and decision making, we present a theoretical framework for how the emotional attributes of social media content influence risk behaviors. We apply our framework to understanding how COVID-19 vaccination Twitter posts influence acceptance of the vaccine in Peru, the country with the highest relative number of COVID-19 excess deaths. By employing computational methods, topic modeling, and vector autoregressive time series analysis, we show that the prominence of expressed emotions about COVID-19 vaccination in social media content is associated with the daily percentage of Peruvian social media survey respondents who are vaccine-accepting over 231 days. Our findings show that net (positive) sentiment and trust emotions expressed in tweets about COVID-19 are positively associated with vaccine acceptance among survey respondents one day after the post occurs. This study demonstrates that the emotional attributes of social media content, besides veracity or informational attributes, may influence vaccine acceptance for better or worse based on its valence.

3.
AAPS J ; 24(6): 101, 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2054053

ABSTRACT

This publication provides some industry reflections on experiences from the Chemistry, Manufacturing, and Controls (CMC) development and manufacture and supply of vaccines and therapies in response to the COVID-19 pandemic. It integrates these experiences with the outcomes from the collaborative work between industry and regulators in recent years on innovative science- and risk-based CMC strategies to the development of new, high-quality products for unmet medical needs. The challenges for rapid development are discussed and various approaches to facilitate accelerated development and global supply are collated for consideration. Relevant regulatory aspects are reviewed, including the role of Emergency Use/Conditional Marketing Authorizations, the dialogue between sponsors and agencies to facilitate early decision-making and alignment, and the value of improving reliance/collaborative assessment and increased collaboration between regulatory authorities to reduce differences in global regulatory requirements. Five areas are highlighted for particular consideration in the implementation of strategies for the quality-related aspects of accelerated development and supply: (1) the substantial need to advance reliance or collaborative assessment; (2) the need for early decision making and streamlined engagement between industry and regulatory authorities on CMC matters; (3) the need to further facilitate 'post-approval' changes; (4) fully exploiting prior and platform knowledge; and (5) review and potential revision of legal frameworks. The recommendations in this publication are intended to contribute to the discussion on approaches that can result in earlier and greater access to high-quality pandemic vaccines and therapies for patients worldwide but could also be useful in general for innovative medicines addressing unmet medical needs.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Vaccines/therapeutic use
4.
Sci Rep ; 12(1): 9832, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1890256

ABSTRACT

Understanding how different online communities engage with COVID-19 misinformation is critical for public health response. For example, misinformation confined to a small, isolated community of users poses a different public health risk than misinformation being consumed by a large population spanning many diverse communities. Here we take a longitudinal approach that leverages tools from network science to study COVID-19 misinformation on Twitter. Our approach provides a means to examine the breadth of misinformation engagement using modest data needs and computational resources. We identify a subset of accounts from different Twitter communities discussing COVID-19, and follow these 'sentinel nodes' longitudinally from July 2020 to January 2021. We characterize sentinel nodes in terms of a linked domain preference score, and use a standardized similarity score to examine alignment of tweets within and between communities. We find that media preference is strongly correlated with the amount of misinformation propagated by sentinel nodes. Engagement with sensationalist misinformation topics is largely confined to a cluster of sentinel nodes that includes influential conspiracy theorist accounts. By contrast, misinformation relating to COVID-19 severity generated widespread engagement across multiple communities. Our findings indicate that misinformation downplaying COVID-19 severity is of particular concern for public health response. We conclude that the sentinel node approach can be an effective way to assess breadth and depth of online misinformation penetration.


Subject(s)
COVID-19 , Lymphadenopathy , Social Media , Communication , Humans , Public Health
5.
Nano Lett ; 21(12): 5209-5216, 2021 06 23.
Article in English | MEDLINE | ID: covidwho-1263457

ABSTRACT

The ability to rapidly diagnose, track, and disseminate information for SARS-CoV-2 is critical to minimize its spread. Here, we engineered a portable smartphone-based quantum barcode serological assay device for real-time surveillance of patients infected with SARS-CoV-2. Our device achieved a clinical sensitivity of 90% and specificity of 100% for SARS-CoV-2, as compared to 34% and 100%, respectively, for lateral flow assays in a head-to-head comparison. The lateral flow assay misdiagnosed ∼2 out of 3 SARS-CoV-2 positive patients. Our quantum dot barcode device has ∼3 times greater clinical sensitivity because it is ∼140 times more analytically sensitive than lateral flow assays. Our device can diagnose SARS-CoV-2 at different sampling dates and infectious severity. We developed a databasing app to provide instantaneous results to inform patients, physicians, and public health agencies. This assay and device enable real-time surveillance of SARS-CoV-2 seroprevalence and potential immunity.


Subject(s)
COVID-19 , Quantum Dots , Humans , Immunoassay , SARS-CoV-2 , Sensitivity and Specificity , Seroepidemiologic Studies , Smartphone
6.
ACS Nano ; 14(4): 3822-3835, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-832348

ABSTRACT

COVID-19 has spread globally since its discovery in Hubei province, China in December 2019. A combination of computed tomography imaging, whole genome sequencing, and electron microscopy were initially used to screen and identify SARS-CoV-2, the viral etiology of COVID-19. The aim of this review article is to inform the audience of diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics. We describe point-of-care diagnostics that are on the horizon and encourage academics to advance their technologies beyond conception. Developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak would be useful in preventing future epidemics.


Subject(s)
Betacoronavirus/pathogenicity , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Smartphone , COVID-19 , COVID-19 Testing , Humans , Mobile Applications , Nucleic Acid Amplification Techniques , Pandemics , Population Surveillance , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Tomography, X-Ray Computed , Viral Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL